An Optimal Open-Loop Strategy for Handling a Flexible Beam with a Robot Manipulator

Abstract

Fast and safe manipulation of flexible objects with a robot manipulator necessitates measures to cope with vibrations. Existing approaches either increase the task execution time or require complex models and/or additional instrumentation to measure vibrations. This paper develops a model-based method that overcomes these limitations. It relies on a simple pendulum-like model for modeling the beam, open-loop optimal control for suppressing vibrations, and does not require any exteroceptive sensors. We experimentally show that the proposed method drastically reduces residual vibrations – at least 90% – and outperforms the commonly used input shaping (IS) for the same execution time. Besides, our method can also execute the task faster than IS with a minor reduction in vibration suppression performance. The proposed method facilitates the development of new solutions to a wide range of tasks that involve dynamic manipulation of flexible objects.

Publication
2023 IEEE International Conference on Robotics and Automation (ICRA)
Alejandro Astudillo
Alejandro Astudillo
Postdoctoral Researcher

Passionate about robotics and outer space. Researching on real-time motion planning and fast model predictive control for robots. Other research topics include execution of control and estimation algorithms on a smartphone-based flight controller for a quadrotor.